
What can we learn from Edsger W. Dijkstra? 

by Tony Hoare. 

0. Preamble 

I would like to start by joining all of you in the expression of deep gratitude to 
Schlumberger for the grant which set up a series of lectures to honour the 
memory of Edsger W. Dijkstra. My next thanks go to the University of Texas at 
Austin, for inviting me to deliver the first lecture in the series. For forty years 
Edsger W. Dijkstra was my close professional colleague and my close 
personal friend. The goals and direction of both my academic and my 
industrial career as a scientist, have been inspired not only by his teaching but 
also by his personal example. So I will drop the formalities, and even I will 
drop his family name and his middle initial W (standing for Wybe), of which he 
confessed himself to be inordinately fond. I will refer to him simply, as I did in 
life, as Edsger. 

Edsger spent the latest and longest and happiest period of his career as a 
scientist, with the title of Schlumberger Chair of Computer Sciences at the 
University of Texas at Austin. He spent the earliest and incredibly productive 
part of his career as a software engineer at the Mathematisch Centre in 
Amsterdam. The two main topics of my lecture will be Science and 
Engineering, and my examples will be drawn from Computer Science and 
Software Engineering. I will first contrast their many striking differences in 
culture that divide scientists from engineers, and then describe the immense 
benefits to both of them that arise when they work together in harmony. First I 
will describe the branch of Computer Science to which Edsger and I devoted 
our main attention. It takes computer programs in general, rather than 
particular applications, as the subject of its study. Next, I will describe the 
qualities which Edsger most strongly recommended and most conspicuously 
displayed as a scientist. Then I will turn to engineering, with a survey of his 
early achievements in the construction of operating systems and compilers. 
Edsger always believed that the concerns of the scientist are best separated 
from those of an engineer, and I will explain many reasons why this should be. 
But in the end, scientists and engineers derive the greatest benefit from 
working together with each other, and with the industries that can benefit from 
the advances in their research. In the last part of my lecture, I will look forward 
to the prospects of exploiting and bringing into widespread application many 
of the inspirational scientific concepts and laws discovered by Edsger as a 



scientist, for the benefit of the computer hardware industry, the software 
industry, and all their millions of customers. 

1. Science 

Edsger studied theoretical physics at the University of Leiden. This gave him a 
strong taste for the goals and ideals and practices of a mature branch of pure 
science. On graduation, he made a considered decision to move to the new 
science of computing. After a Doctoral thesis on the architecture of the X1 
computer, he rapidly realised that “Computer Science is no more about 
computers than astronomy is about telescopes”. It is computer software, the 
programs that control the computer, that he made the subject of his lifelong 
scientific study. And in this I was his follower. I followed him in the belief that 
we were in fact engaged in a branch of science. So I will start my presentation 
by summarising the essential similarity of computer science with those longer 
established branches of science, whose history stretches back to the Greek 
Philosophers, particularly Aristotle in the fourth century bce. They include 
Physics, Medicine, and Biology. The development and maturation of a new 
branch of science can be described as a series of four steps, consisting of 
description, analysis, explanation, and finally prediction. 

1.1. Description. The earliest goal of a new branch of science is description. 
Whatever the subject matter of the new science, whether it is a natural 
occurring object like an ant or an antelope or an artificial product like an 
automobile or an aeroplane, the first questions addressed by the scientist are 
„What are its properties, and what does it do?‟ For artificial products, a 
description of properties and behaviour can serve as a specification, 
describing an appropriately precise interface between its purchaser and its 
supplier. 

Scientific description often requires the development of a conceptual 
framework and terminology different from that of natural language. 
Mathematics often provides the inspiration, though sometimes the relevant 
branch of mathematics needs to be further developed in the direction of its 
application. In the case of programs in general, a highly relevant branch of 
mathematics is logic. Logic has long been studied and extended by 
philosophers, including Aristotle, Occam, Leibniz. More recently, it has been 
significantly extended by philosophers of mathematics, like Boole, Frege and 
Russel. Logic has now found extensive application to programming and 
programming languages; and again it has been significantly developed in its 
new application. A good example is the logical calculus of weakest 



preconditions, which we owe to Edsger. I expect that many of these 
extensions will find their way back to the core of logic. 

1.2 Analysis. As a branch of science matures, its questions become deeper. 
We move from a purely descriptive and classificatory phase to one that seeks 
more convincing explanations. We want to know not only what the thing does, 
but how it does it. A scientific answer to this question is often provided by 
dissection, which divides the object into parts, and examines the ways in 
which the parts interact with each other. In the case of an engineering 
product, the interactions are specified in an interface, which can serve as a 
contract between engineers designing and constructing components to meet 
the same interface from both sides. 

In software engineering, the interfaces are specified as assertions, which also 
serve as contracts. For example, an assertion written before a program 
component (a precondition) describes what the designer of the component 
may assume to be true before execution of the component. Similarly, an 
assertion written after a program component (its postcondition) expresses an 
obligation in the design of the component itself — to make it true after 
execution. This use of assertions as guide to design has been illustrated in 
many elegant and efficient algorithms, developed and described by Edsger. 

The principle of top-down design is now well established in Software 
Engineering practice. Assertions have been included in most standard 
computer programming languages. They are widely used as oracles to assist 
in program testing, to check whether a test run has gone wrong, and if so, to 
indicate as closely as possible exactly where in the program the error has 
occurred. In Microsoft, assertions have been renamed as contracts, to 
emphasise their potential role in the definition of interfaces at the design stage 
of the product. 

1.3. Explanation. The next question probes even more deeply than the last. It 
asks for an explanation why the program works. Why is it that any assembly 
of components, conforming individually to these particular internal interface 
descriptions, will in combination evince the behaviour described by the 
external specification? That is the question addressed by the theory of 
programming. The answer to the question is codified in one or more 
presentations of the semantics for a programming language. The semantics 
acts as an interface between the user of the language and its implementer. 

Although the search for valid explanation is the province of pure scientific 
research, it is the explanation discovered by this pure research that is most 



helpful to practicing engineers. It helps them to determine good boundaries at 
which to define the interfaces between components. It permits them to replace 
components by better or cheaper ones that conform to the same interface. It 
gives them confidence that the experiments on a structurally similar prototype 
will give results applicable to the eventually manufactured product. 

1.4. Prediction. My fourth and final question is often taken as the criterion of 
maturity of a branch of science, that it can make accurate predictions of 
natural phenomena and experimental observations. The calculations required 
to make successful predictions in science are based on mathematics. In the 
computer era, they are usually carried out by a computer program, which has 
been based on the relevant scientific theory. It is the consistent and repeated 
success of prediction that accumulates convincing evidence of the validity of 
the scientific theory on which the prediction is based. If the same theory 
predicts phenomena of many apparently different kinds, the evidence 
becomes overwhelming. No-one can doubt a theory of gravitation that applies 
equally to falling apples, flying cannon-balls, and planets wandering in the sky. 

In the case of computer programs, the checking of conformity to an external 
specification and to internal interfaces is a matter of proof. For the engineer, 
proofs predict the properties of a computer program even before it runs. The 
details of the proof are these days carried out by computer, using the 
fascinating technologies of constraint satisfaction and model checking, which 
are improving at a phenomenal rate. It has been this progress that has 
brought the science of computing, and Edsger‟s contributions to it, much 
closer to application in the large-scale engineering of software as well as 
computer hardware, as I will describe in the final section of my talk. 

That concludes my brief survey of four stages in the development of a mature 
branch of science. It appears that Computer Science has passed through the 
first three of them, and is making rapid progress in the fourth. 

Edsger was fortunate in his opportunity to contribute at its very start to the 
new science of computing. He was blessed with the scientist‟s gift for 
formulation of fundamental questions, and for finding elegant answers to 
them. He pursued the scientific ideal of total correctness of computer 
programs, with the same rigour and the same vigour as a physicist pursues 
the ideal of accuracy of measurement, and as a chemist seeks absolute purity 
of the materials that they refine and use. He recommended (in the title ofEWD 
288, July 1970) the “concern for correctness as a guiding principle for 
program construction.” Like Newton, (EWD 273, 1969) he recognized “for the 
human mind the mathematical method is indeed the most effective way to 

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD288.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD288.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD273.PDF


come to grips with complexity” . His constant advice was to follow the general 
scientific maxim of separation of concerns. For example (EWD 273) he tells 
us to “separate for each program component clearly “what it does” from “how 
it works””. And finally, (EWD 709, 1979) “separation of concerns for efficiency 
and correctness—to get rid of our operational thinking habits—that is what I 
regard as Computer Science‟s major task.” 

To these important scientific principles he added a complete refusal to play 
the part of a salesman. He wrote up his work in a clear and scholarly style, 
and he left it to the reader to decide whether it had any value. He never 
compared the work of others unfavourably to his own. He rarely submitted his 
work to conferences or to Journals for publication. Instead, he revived the 
early tradition of modern science, that of sending his work in a neat 
manuscript to other scientists whose opinion he respected. The only 
concession to modernity was the use of a photocopier as a method of 
reproduction, to reach a wider circle of friends. 

He certainly looked forward to the time when the results of his work would be 
widely exploited by engineers in industry: (EWD 209, 1967) “many debugging 
aids that are in vogue now are invented as a compensation for the 
shortcomings of a programming technique that will be denounced as obsolete 
in the near future”. But he never tried to sell his results for immediate 
application. Because to the true scientist, his most precious virtue is that of 
scientific integrity, and his most precious emotion is that of scientific doubt. 
Both of these qualities would be grave impediments to the success of a 
salesman. The qualities of a salesman are equally incompatible with those of 
a scientist. 

The idealistic view that I have put forward of computing as a science is taken 
as the basis of policy by my current employers. The policy was laid down 
fifteen years ago on the foundation of Microsoft Research Division by Bill 
Gates and Nathan Myhrvold. The policy is to recruit the best scientists in the 
world, provided that they are passionate in their commitment to an area of 
scientific research that might conceivably be relevant, some time in the future, 
to the software industry. Recruits should also welcome the opportunity that 
Microsoft provides, to bring the eventual results of their research to fruition, in 
applications of long-term beneficial impact on the welfare and prosperity of a 
significant fraction of mankind. Having chosen a promising recruit, Microsoft 
would then trust him or her to do excellent research to the advancement of 
science. No need for research proposals in advance. No need to set 
timescales and deadlines. No external evaluation of success or failure. The 
Company trusted that the individual researcher would report to the Company 

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD273.PDF
http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD709.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF


when he or she believed that the research results were sufficiently mature to 
be incorporated into Microsoft‟s products or practices. At this stage, many of 
the researchers would personally assist, engage or even manage the transfer 
of technology, perhaps moving to a development division for a few years, 
before moving back into the next cycle of research. 

I heard Nathan Myhrvold give a lecture in Cambridge on this policy in 
December 1998. It was the decisive factor in my decision to take up Roger 
Needham‟s offer of a job with Microsoft Research and move to Cambridge in 
1999, on retirement from Oxford University. My experience in the last ten 
years has amply demonstrated Microsoft‟s continued commitment to its policy; 
it has also demonstrated an extraordinary degree of success in improving the 
quality and extending the range of Microsoft products. 

2. Engineering. 

I would like now to move on from the discussion of pure science to deal with 
applied science and engineering. I will make a case that the activity and 
culture of engineering is in polar antithesis to that of the science, along almost 
every axis of evaluation. Engineers and Scientists engage in projects 
spanning different timescales, they pursue different goals and ideals, they 
require different levels of evidence for their judgements, they have opposite 
requirements for generality or specificity of knowledge, and they place 
opposite emphases on separation or amalgamation of concerns. They have 
opposite requirements for originality or conformity, and they strike a different 
balance between mathematical formalisation and intuitive judgement based 
on experience. 

This polarisation in no way prevents a brilliant scientist from being also a 
brilliant engineer. This is not in spite of but actually because of the 
polarisation. Indeed, many spectacular breakthroughs in both science and 
engineering have resulted from a personal move from science to engineering 
or vice versa. Edsger himself provides an excellent example. In his earlier 
years at the Mathematisch Centrum and later at the Technical University at 
Eindhoven, he was a remarkably successful Software Engineer. 

He wrote and delivered the very first compiler for the new international 
algorithmic language ALGOL 60. He devised the algorithms which were 
necessary in the implementation of a complete version of the language, and 
they were later widely copied. Incidentally, he invented and first practiced the 
technique of „pair programming‟, now beloved of the advocates of Extreme 
Programming. His colleague Jaap Zonneveld sat at the opposite side of his 



working table, and every instruction in the compiler was only written (by both 
of them) when they had discussed and agreed that it was correct. In the 
evening each of them took his own copy of the code back to his separate 
home, to protect against the danger of fire. 

His next achievement was to lead a team of research students in the design 
and implementation of the THE operating system, for use in the Technical 
University of Eindhoven. It ran on the Electrologica X8 computer, having 48K 
of 27-bit words of core memory and, as a backing store, a drum of 512K 
words. On this it implemented a purely software virtual memory, spooling, 
batch processing and multiprogramming. It was the first operating system built 
in a rational design process, based on explicit separation of concerns in a 
logical hierarchy of abstraction and implementation. 

In the early 1970‟s I visited Edsger in Eindhoven to study this system in detail. 
He organised a demonstration of the system in operation under stress. He 
constructed a paper tape loop, whose input would fill the spooling buffers. He 
wrote an infinitely recursive program, whose stack would fill the drum 
supporting virtual memory. On occasion, the paper tape reader would stop, 
with a message on the console that warned of full buffers. The operator could 
override the warning. On occasion, another warning was displayed, identifying 
one of the four programs in the mix that was exceeding its storage bounds. 
This message too could be over-ridden. Eventually, the whole system ground 
to a halt, and printed out a brief message that the store was full, and the 
operating system should be reloaded. Edsger confessed that this was the first 
time that the final error message had occurred: it had not even been tested. 
Nevertheless, the text of the message had been stored permanently in the 
extremely precious main memory; it would only ever be needed when there 
was no room for it to be retrieved from drum! The story illustrates the concern 
of the good engineer to cater adequately for all eventualities, including those 
that the good scientist would much sooner, and very properly, choose to 
abstract from. 

Nevertheless, I believe that Edsger‟s subsequent success as a scientist owes 
much to his early experience as a software engineer. It was as an engineer 
that he discovered deadlocks, race conditions, non-determinacy and infinite 
overtaking. It was as an engineer that he invented semaphores, producers 
and consumers and mutual exclusion. But it was as a scientist that he was 
able to extract the essence of each of these phenomena, and teach us all how 
to recognise and control the associated problems by the application of reason. 



Edsger repeatedly advised that all researchers should always know their own 
“Buxton Index”, and that of their colleagues and their rivals. It was named after 
the British Computer Scientist John Buxton. It is “…the most relevant one-
dimensional scale along which to place and compare individuals, 
organizations, industries, and movements. [It measures (in years)] how far in 
the future their planning extends…Cooperation between persons or groups 
with very different Buxton Indices leads to mutual (moral) reproaches as long 
as the partners are unaware of the difference: the partner with the small 
Buxton Index is accused of short-sightedness and opportunism, the one with 
the large Buxton Index is accused of hobbyism and a lacking sense of 
responsibility.(EWD988, 1986).” 

I believe that differences between scientists and engineers can be recognised 
not just on the single numerical value of the Buxton index. It is necessary to 
consider in all at least seven criteria, including the Buxton index, under which 
the culture and practices of scientists and engineers can be differentiated. I 
would like each of you in my audience to think about each criterion, whether 
you have more affinity to the culture of science or of engineering; or whether 
you would like to move from your current position in one direction or another. 
For brevity, I will describe the case when the scientist is a man and the 
engineer is a woman. I will later suggest that they will both work better in close 
but not necessarily intimate partnership. 

Timescale. The first major difference between scientists and engineers lies in 
the time-scales of their plans and ambitions. The scientist works for posterity. 
He wants to discover the absolute truth about the natural world, however long 
it takes, and however much it costs. Truth is permanent, and the knowledge of 
truth will never lose its literally inestimable advantage over the alternative. 
Even knowledge that is nowhere applied has more value than ignorance that 
is applied widely. 

The engineer works for a known client, or for a known or speculative niche in 
an existing market. She is committed to a fixed budget and a fixed delivery 
date for the product of her labours. The service life of an engineering product 
is known to be limited, and so is the market life of a series of products, 
improving incrementally over time. In compensation for the shorter timescale, 
the engineer gains recognition sooner than the scientist, in the form of a 
grateful client or a commercially profitable product. And the recognition may 
well be financial as well. 

Idealism. The scientist pursues absolute and objective scientific ideals. For 
example, the physicist pursues an ideal of accuracy of measurement; the 

http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD988.PDF


chemist constantly seeks to improve the purity of materials. If something can 
be measured to 99.99 percent accuracy, the physicist wants to add another 
nine to the fraction. If materials of 99.99 percent purity are obtainable, the 
chemist also wants to add another 9. 

The scientist pursues his ideals for their own sake. He pursues them far 
beyond the current needs of the market place, or even its future projected 
needs. Scientists are not discouraged when the fundamental scientific laws of 
their own science restrict the ultimate limits of their achievement of an ideal: 
they just try to get ever closer and closer to that theoretical limit. 

In computer science, Edsger was the first to formulate and pursue the ideal of 
total correctness of computer programs, achieved by mathematical proofs 
conducted during their design and implementation. Results of incompatibility 
and undecidability place a limit on what can be achieved: but there is still a lot 
of progress to be made before we get close to that limit. 

The engineer has no motivation to pursue ideals. Her main duty is to fully 
understand the full requirements of her clients and customers. She has to 
understand their many conflicting needs, and seek an acceptable and feasible 
compromise between them. She develops her ingenuity to deliver on time and 
within budget a product that is only just good enough for present (or at least 
clearly foreseeable) requirements. 

Certainty. The scientist seeks the highest degree of certainty, backed up by 
an overwhelming mass of convincing experimental evidence. For example, 
physicists will continue to devise new ways of testing Einstein‟s theory of 
relativity, long after its correctness has been put beyond doubt—even 
unreasonable doubt. 

The engineer has no time to pursue certainty as an end in itself. She develops 
confidence to live with the innumerable uncertainties of the real world, and 
finds ways of managing the inevitable risks involved. 

Generality. The scientist seeks the most general theories, those that apply, 
possibly with different parameters, to the widest possible range of 
phenomena, both natural and artificial. This often requires introduction of new 
and abstract mathematical concepts, in order to show that a range of existing 
scientific laws can be seen as special cases of some more general unifying 
law. But the reward is that the unified law inherits all the evidence that has 
been accumulated in support of the more specific theories which it subsumes. 
And because they are special cases, each of the existing laws benefits from 
all the increased credibility of the general law. 



Because of the high level of abstraction, a unified theory is often of less 
practical use than the specific theories which it subsumes. So the engineer 
has little truck with generality. Her duty is to study all the particularities of a 
specific environment, a specific customer, or a specific market place. She 
exploits specific solutions to all those particular and peculiar problems, for 
which the generality of science can offer no solution. She understands in their 
unavoidable diversity the whole range of specific scientific theories that are 
directly relevant to different aspects of her current project. 

Separation of concerns. The scientist separates concerns. He designs his 
laboratory experiments in an idealised environment, to isolate them as far as 
possible from noise and dust and disturbances of the real world. He isolates 
all extraneous factors and carefully controls the relevant ones. 

The engineer has to bring together an almost unbounded collection of relevant 
concerns, and tries to resolve them all simultaneously; none of them can be 
controlled, none can be ignored, and only rarely can they be elegantly 
simplified. She must not be bedevilled by the excruciating details of 
incompatible software platforms, user input errors, and standards for security. 
She therefore learns to live with the imperfections of the real world, and 
develops her ingenuity to avoid the problems, to work around them, and in the 
last resort, to persuade her customer to live with them. For the engineer, 
„good enough‟ must always be good enough. 

Originality. The scientist insists on originality in pursuit of new results, or 
corrections and refinements to established theories. In writing up the results, 
all sources must be scrupulously acknowledged, and plagiarism is punished 
by exclusion from the scientific community. 

For the engineer, originality is to be avoided wherever possible. She is well 
aware of all current best practices and standards, and she relies on tried and 
true methods wherever applicable. If her project fails through an unnecessary 
attempt at innovation, she is legally liable to a civil suit for damages, and she 
may even be excluded from practice of her profession. 

Formalisation. The scientist expresses scientific knowledge in precise 
mathematical formulae, often surprisingly elegant—“well worth a thousand 
pictures” he would say. The consequences of a collection of formulae can 
then be deduced by mathematical calculations or even proof. Calculations and 
proofs are often messy and laborious, but fortunately they are nowadays 
performed by scientific software, based on the relevant scientific theories. I 
will return to this point later. 



The engineer has to deal with a multitude of specific problems, many of which 
are not formalisable, or not sufficiently repeatable to permit the 
experimentation necessary to the progress of science. To solve these 
problems, the engineer has to rely on common sense, backed up by good 
judgment and engineering intuition. Intuition is based on her long experience 
of the relevant technologies, and of the real world environments in which the 
technologies are to be applied. Her experience is developed and re-inforced 
by case studies and stories recounted by her teachers and colleagues. 

3. Synthesis. 

That is the end of my long discourse on the wide and multi-dimensional gap 
which separates the culture of science and engineering. I have been guilty of 
gross exaggeration of the antithesis between them. I now want to describe 
synthesis of the two extremes, and show how their complementary qualities 
can be exploited to their mutual benefit. The agent of this synthesis in the last 
twenty years has been the development and use of powerful software tools by 
both engineers and scientists. 

Scientists now write computer programs which embody established or 
conjectured scientific theories; the software checks the plausibility of the 
theory by simulation of the relevant phenomena, and predicts in detail the 
results of future experiments. When the necessary real-world experiments 
have produced their results, software is essential to check conformity with a 
highly complex theory to the desired degree of accuracy. Finally, software is 
needed to manage the staggering volumes of experimental data that are 
produced by the larger-scale experimental equipment like telescopes, 
satellites, and particle accelerators. This data is made available for 
exploitation by other scientists throughout the world. 

Engineers need software for similar purposes: to capture their earliest designs 
for a product, to simulate and predict its properties and behaviour when 
manufactured, and to optimize and check the relevant parameters against 
established scientific theory. Modern cars and airplanes (and even computers) 
are designed almost wholly inside a computer, and the role of physical 
prototyping and testing has been radically reduced. 

Large and highly evolved suites of design automation software are now a 
major channel for technology transfer between scientists and engineers. Each 
new advance in science is incorporated as an improvement to an existing tool, 
which is instantly propagated to every engineer who uses the tool. The failure 
of any product produced or checked by the tool will lead to correction of the 



tool, and thereby inhibit repetition of the failure by others. In some cases, the 
failure will be treated as a refutation of the theory embodied in the tool, and 
lead to its abandonment. Because of this possibility of refutation, the success 
of the engineering product, like success of a scientific experiment, will confirm 
confidence in the validity of the scientific theories embodied in the tool. 

In summary, software provides a synthesis for the antithetical cultures and 
practices of science and engineering; and it is to their immense mutual 
benefit. The advantages are multiplied in the presence of good feedback 
between the producers and users of a tool. Indeed, progress in both science 
and engineering, for a limited period, can be given an exponential boost, such 
as can be seen in amazing progress of modern genetics and biology around 
the turn of this century. Over the same period, similar rates of advance have 
been observed in more traditional branches of science—for example, in 
physics and in astronomy. 

My prediction (or perhaps rather my hope) is that Computer Science itself will 
benefit from a similar boost, by the incorporation of verification technology in 
generally used software tools, and their widespread use both by scientists and 
engineers. What is the evidence for this prediction, or grounds for this hope? 
First, there is evidence provided by analogy of the recent adoption of proof 
technology, including model checking, within the electronics industry. I will 
take examples from developments which took place here in Austin Texas 
during and since my sabbatical visit in 1986/87. My other main source of 
examples in software comes from my experience (2000-2010) at Microsoft, 
where the software development divisions now routinely use productivity tools 
which incorporate logical calculation and proof. The tools were developed by 
the Research Division, on the basis of the scientific results of forty years of 
University research by Computer Scientists. And in its turn, this research was 
largely inspired by Edsger. 

3.1 Hardware 

My first example of the application of proof to computer chips was made at 
Computational Logic Inc, a spin-off of the University of Texas in Austin. It was 
part of the ambitious STACK project which used the previous version of the 
ACL2 proof tool to prove correctness of software: an assembler, a compiler, 
and a verification condition generator. But the base of the stack was the top-
down design of a complete microprocessor, which was thereby proved correct 
by construction. An early industrial application of proof was provided by 
Inmos, the UK chip manufacturer, in collaboration with Bill Roscoe at Oxford 
University. His team built and used a simple tool to check the design of the 



floating point hardware of the transputer, thereby obviating the need for soak-
testing before first delivery. An early application of model checking 
technology, for which Alan Emerson shared a recent Turing Award, was made 
by Carl Pixley at the MCC research corporation in Austin. When he 
demonstrated his tool on a significant example, its speed excited the 
amazement of an engineer from Motorola, who expected him to go on to 
demonstrate it on a different set of input data. He was even more amazed 
when Carl assured him that this was unnecessary: the single run had checked 
all possible input data. 

The technology transfer of verification technology into hardware design was 
triggered by a single event: the infamous Intel floating point division bug, 
which hit the Company where it hurts most—in its share price. Proof 
technology is now incorporated into the design automation toolset of major 
chip manufacturers like Intel. Many of them use ACL2, and other academically 
developed proof tools. This morning, Warren Hunt described to me the way 
that an ACL2 prover has been adapted for routine used in Centaur, a chip 
design Company located in Austin, Texas. ACL2 has proved correctness of 
the Company‟s recent design of a number of floating point, integer, and logical 
operations of the X86 architecture. Every night, the entire half million lines of 
their latest Verilog design is translated to logical form and fed into a new copy 
of ACL2, ready for use by designers the next morning. Each night they also 
re-run many of the verifications that have been done previously, to make sure 
that recent changes are safe. Each week, they attempt to re-run the entire 
regression suite of previously proven results. The Company is likely to 
continue to expand the use of this technology, because it is faster, cheaper 
and more thorough than non-exhaustive simulation. 

3.2 Software 

The gradual infiltration of proof technology into Microsoft programming 
practice has followed a course similar to that of hardware verification. The first 
success story was the PREfix program analysis tool, used first to analyse the 
complete code base of Windows Server in 2003. It detected around ten 
percent of the errors corrected in the final integration tests before release. A 
necessary condition of its adoption was that it did not require any annotation 
of the program. It therefore had to concentrate on generic errors like subscript 
overflow, uninitialized variables and null dereferences. 

In the ideal, any such operation that cannot be proved correct should be 
brought to the programmer‟s attention as a possible error. However, the 
number of such warnings was initially far too high. The cost in time for 



checking that a warning is unjustified (a so-called false positive) is actually 
greater than that of merely determining that the warning is true, and simply 
correcting it. 

Heuristic filters were therefore developed by experimental application of the 
tool to the specific patterns of Microsoft software; and this brought the number 
of false positive reports down to an acceptable level, somewhere round fifty 
percent. However it introduced the danger of masking real errors; failure to 
report an error is known as a false negatives. The PREfix tool was shortly 
joined by a faster version (PREfast) adapted for unit testing; and it was 
extended by an assertion language SAL, to permit more precise analyses. 

In the year 2000, a survey of enterprise customers revealed that a leading 
cause of server crashes (blue screens) were errors in device drivers, most of 
which are not written by Microsoft programmers, and are actually never seen 
by Microsoft. The SLAM project was undertaken to address the problem. It 
inferred many of the assertions needed for correctness checking by a new 
technique of counter-example-guided abstraction refinement. SLAM 
concentrated on detecting the violation of sequencing constraints on calls to 
the Microsoft Driver Kernel; and the availability of a checker motivated the 
documentation of many previously unrecorded rules of correct usage of the 
kernel API. For each constraint, SLAM was able to check whether a driver met 
the constraint or did not. These reports were reliable, containing essentially no 
false positives or false negatives. But there was a third report, less useful and 
fortunately rarer, which was given when the checker ran out of time. The 
SLAM technology is now incorporated as part of Microsoft‟s Static Driver 
Verifier SDV. It is distributed as a tool in Visual Studio, the software 
development toolkit; for use by all manufacturers of devices that can be 
attached to PCs. 

The real trigger that motivated accelerated transfer of program proof 
technology within Microsoft was one that could never have been predicted by 
any of the researchers into the technology. It was the computer virus, worm, 
or bot, generally now classed as malware. For example, the infamous Code 
Red worm in 2001 brought the commercial and financial networks of the 
whole world to a standstill for several days. The estimated cost to the world 
economy was around four billion dollars. 

The most easily exploitable vulnerability of PC software, whether written by 
Microsoft or by independent software vendors, was buffer overflow, occurring 
for example on call of the C standard input routines. It is a particular case of 
subscript error. Since the designers of malware have access to the whole 



Microsoft code base, complete elimination of this vulnerability was adopted as 
target. False negatives had to be vanishingly unlikely for this particular error, 
so that even malware writers would stop looking for them. That was the goal 
for development and widespread use of a new tool called ESPX. which aimed 
to eliminate false negatives in the report of subscript overflow. To support the 
necessary proof a specialised assertion language was designed, and software 
developers, with the aid of an inference tool, were made responsible for 
including them. 

A dramatic reduction in false positives is the goal of more recent tools like 
PEX and SAGE, developed by Microsoft Research. The method is to generate 
test cases that reach every point in the code which cannot be proved correct. 
So every error report would include a test case which revealed the error. For 
this, and many other fascinating tools, please consult 

http://research.microsoft.com/en-us/groups/rise 

My final example is an experimental project to prove correctness against a full 
and formal specification of an important item of Microsoft software, the 
separation kernel of the Microsoft Hypervisor. The kernel is a C program of 
some hundred thousand lines of code, with five thousand lines of assembly. It 
uses pointers and threads and volatile variables, together with ingenious data 
representations and algorithms, to achieve high efficiency of interpretation of 
guest operating systems on the X86 architecture. The project was conducted 
in collaboration with the University at Saarbrucken, and with significant 
participation by mathematical engineers from Russia. It used a new verifying 
compiler for Concurrent C, known as VCC. The proof strategy was designed 
by Ernie Cohen, a graduate from UT Austin whom I met in 1986. The project 
lasted three years, and produced a machine-checked verification of some 
thirty thousand lines of code, sufficient evidence for the feasibility of extending 
the proof to the complete program. 

The project revealed a significant problem. It required more than one line of 
annotation for every line of code. So although the project met its original 
scientific goal as a feasibility study, its continuation was not justifiable on 
commercial grounds. A similar fully completed project in Australia to verify an 
L4 kernel suggests that proof of a shared-memory concurrent program 
generates ten times more verification conditions than a conventional 
sequential program. Clearly more research is needed into the science that 
underlies concurrency, together with improvements in the tool technology, if 
the machine-checked proof of operating systems is to become a standard 
precaution. The necessary breakthrough is more likely to result from 

http://research.microsoft.com/en-us/groups/rise


academic research, while its gradual scaling up and scaling out to widespread 
application will best be left to Industry. 

Envoi 

I predict that the simple commercial pressure of saving money and making 
profits will lead to yet further continuous advances in the application of proofs 
to programs in the Software Industry. In advancing the technology, Microsoft 
and other software suppliers have one great advantage over academic 
researchers: a vast supply of stable software to use in experiments, and to 
guide the improvements of the necessary tool in a direction most profitable to 
the Company. In most cases, this will be in the analysis of existing software, 
and the detection of errors introduced by modifying it. Academic researchers 
will be welcome to assist and advise in this enterprise, but the more idealistic 
researchers will avoid too much exposure to short-term industrial goals. As 
Edsger has taught us, the goal of making profits for a commercial Company is 
irrelevant to academic research. It is the more idealistic academic 
researchers, by concentrating on what they do best, who will make the 
breakthrough that leads to a step change in the rate of advance. 

As I have described, Edsger‟s view is that the goal of academic research is 
the advancement of scientific knowledge: our understanding of what programs 
do, how they do it, why they work, and how to obtain convincing evidence for 
the answers to all the above questions. It still remains a major scientific 
challenge for academic research to demonstrate that the technology of 
correctness proofs will apply to the kind of programs which are widely used 
today; that they can cover a wider range of desirable properties, right up to 
total correctness; and above all, that they can be integrated into the design 
processes, environments and tools of the software engineer, and so get ever 
closer to Edsger‟s ideal of correctness of software by construction. 

 

revised Thu, 25 Nov 2010 
 


